Välkommen tillbaka till Campusbokhandeln! Vi firar med inlämningskampanj: Lämna in din kurslitteratur – få 150 :- och chansen att vinna 1 000 :-. Läs mer här!

Logga in
On Stein's Method for Infinitely Divisible Laws with Finite First Moment | 1:a upplagan

On Stein's Method for Infinitely Divisible Laws with Finite First Moment | 1:a upplagan

  • Häftad, Engelska, 2019
  • Författare: Christian Houdre, Benjamin Arras
  • Betyg:
567
kr
Helt ny

Skickas inom 13 vardagar

Butikslager
Onlinelager
I lager hos leverantör
Välj butik

Beskrivning

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

Produktinformation

Kategori:
Juridik
Bandtyp:
Häftad
Språk:
Engelska
Förlag:
Springer Nature
Upplaga:
1
Utgiven:
2019-04-26
ISBN:
9783030150167
Sidantal:
104

Sök

Varukorg

Din varukorg är tom
Köp Sälj Sök Meny